当前位置:首页 > 教案 > 数学教案

小学六年级数学《变化的量》教案

时间:2026-02-15 19:00:09
小学六年级数学《变化的量》教案

小学六年级数学《变化的量》教案

小学六年级数学《变化的量》教案1

教学目标:

1.结合具体目标,体会生活中存在着大量互相依存的变量。

2.在具体情境中,尝试用自己的语言描述两个变量之间的关系。

教学重点:

结合具体目标,体会生活中存在着大量互相依存的变量。

教学难点:

在具体情境中,尝试用自己的语言描述两个变量之间的关系。

教学用具:课件

教学过程:

一、 课前预习

1、预习书18页内容,尝试回答书上的问题

2、找一找其中的变量,想一想它们之间有没有关系?如果有,有怎样的关系?

3、仔细看书,看看哪些关系能够用式子表示?

二、课堂展示

活动一:观察并回答。

1、下表是小明的体重变化情况。

观察表中所反映的内容,搞清楚表中所涉及的量是哪两个量?观察后请回答。

2、上表中哪些量在发生变化?

3、说一说小明10周岁前的体重是如何随年龄增长而变化的?

小结:小明的体重随年龄的增长而变化。2—6岁和6---10岁是体重的增长高峰。说明这两个阶段是孩子成长的重要阶段。

4、体重一直会随年龄的增长而变化吗?这说明了什么?

说明:体重和年龄是一组相关联的量。体重的增长是随着人的生长规律而确定的。

1、教育学生要合理饮食,适当控制自己的体重。

活动二:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。

观察书上统计图:

1、图中所反映的两个变化的量是哪两个?

2、横轴表示什么?纵轴表示什么?

同桌两人观察并思考,得出结论后,记录在书上,然后再在全班汇报说明。

3、一天中,骆驼的体温是多少?最低是多少?

4、一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?

5、第二天8时骆驼的体温与前一天8时的体温有什么关系?

6、 骆驼的体温有什么变化变化的规律吗?

活动三:某地的一位学生发现蟋蟀叫的次数与气温之间有如下的近似关系。

1、 蟋蟀1分叫的次数除以7再加3,所得的结果与当时的气温值差不多。

2、 如果用 t 表示蟋蟀每分叫的次数,你能用公式表示这个近似关系吗?请你写出这个关系式,全班展示,交流。

3、你还发现生活中有哪两个量之间具有变化的关系?它们之间是怎样变化的?四人小组交流你收集到的信息,选派代表请举例说明

4、 你还发现我们学过的数学知识中有哪些量之间具有变化的关系?

三、反馈与检测

1、连一连,把相互变化的量连起来。

路程 正方形周长

边长 购卖数量

总价 行驶时间

2、说一说,一个量怎样随另一个量变化。

(1)一种故事书每本3元,买书的总价与书的本数。

(2)一个长方形的面积是24平方厘米,长方形的长与宽。

3、小明到商店买练习簿,每本单价2元,购买的总数x(本)与总金额y(元)的关系式,可以表示为:

四、全课小结:今天我们研究的两个量都是相关联的。它们之间在变化的时候都具有一定的关系。下一节课我们将深入研究具有相关联的两个量,在变化时有相同的变化特征,这样的知识在数学上的应用。

小学六年级数学《变化的量》教案2

教学目标:

1、结合具体情境,体会生活中存在着大量互相依赖的变量;

2、在具体情境中,尝试用自己的语言描述两个量之间的关系。

教学过程:

一、创设情境、导入新课

1、师:生活中有哪些变化的现象?这些现象可以用数学的方法表示吗?

(学生已经完成“课前准备”,选择几个学生回答)

2、师:在生活中,很多事物在发生变化。如:人的年龄、身高、体重在变,我国的人均收入、生产总值等等都在变化,象这样的会变化的量,我们都称为变量。

3、师:象这样的例子很多,今天我们就来学习“变化的量”。

设计意图:学生预习后直接导入新课,加深对“变化的量”的认识,寻找生活中的量的认识,引起新课的学习积极性。本环节的课前准备是要学生独立完成。

二、进行新课,掌握变量。

1、请独立完成导学案的“学一学”。

2、师:小组交流刚才的自主学习的内容。并确定中心发言人。

3、小组进行自我展示。

(1)小明的体重变化情况表。

学生谈群学体会:人的年龄和体重是相关联的两个量,人的体重随着年龄的变化而变化。

教师小结。我发现(体重)随(年龄)的增加而增加。

设计意图:课本呈现出第一幅情景图,表格的形式让学生更加清晰的了解年龄与体重的变化,能够回答问题,发现年龄与体重的变化情况,小明的体重随年龄的变化,学生先观察然后回答问题。

(2)沙漠之舟

师:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。(课件出示:出示骆驼体温随时间的变化统计图。)

A、从图中你知道了什么信息?

B、一天中,骆驼体温是多少?最低是多少?

C、一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?

D、第二天8时骆驼的体温与前一天8时的体温有什么关系?

E、每天骆驼的体温总是怎样变化的?

教学意图:通过教学第二幅情景图,认识有关沙漠之舟的基本知识,拓宽学生的课外知识面。读懂统计图,回答问题,通过问题,发现规律。这是本环节的教学目标,学生对于折线统计图的认识已有基础。

3、蟋蟀与气温的关系

A、出示蟋蟀叫的次数与气温之间关系的情境图。

B、你能用式子表示这个近似关系吗?

生:气温h=t÷7+3。

C、理解式子中量的变化。

师:如果蟋蟀叫了7次,这时的气温大约是多少?

如果蟋蟀叫了14次,这时的气温大约是多少?

如果蟋蟀叫了28次呢?

你能发现蟋蟀叫的次数与气温之间是怎样变化的?

小结:通过举例我们可以发现一个量随另一个量变化而变化,这些量就是变化的量。

教学意图:这环节学生理解蟋蟀的叫声用关系式表示,大多学生通过书上的文字提示,都可以完成关系式,个别不行的,就个别辅导。

三、课堂巩固,加深理解。

1.说一说,一个量怎样随另一个量变化。

……此处隐藏2198个字……不再觉得抽象难懂,也有利于学生函数思想的'形成。这样的教学,使学生对函数内容的学习从实际背景和生活经验开始,经历数学化的过程,并逐步向广度和深度两个方向拓展,小学主要理解正比例、反比例的初步模型,到中学逐步上升到严谨、抽象的数学概念。

2、 学生情况分析

其实以前学生学习的一些基本的数量关系(速度、时间、路程和单价、数量、总价等)、探索数和形的变化规律、字母表示数以及五年级和六年级上学期的看图找关系,已经为学生积累了研究变量之间关系的经验。本节课的目标之一要让学生体会生活中存在着大量互相依赖的变量,对这些变化的量有一个整体的结构化的认识,知道可以多种形式表示变量间的关系,并尝试用自己的语言描述它们之间的关系。虽然学生有了一些变量的生活经验,但是从数学的角度学生对具体情境中相互依存的两个变量能感悟多少呢?为此,我对六(5)班37名学生做了前期调查问卷测试,结果分析如下:

问卷试题:在一次实验活动中,小青记录了一壶水加热过程中水温变化的情况,数据如下:

水加热过程中水温变化记录

时间(分)012345678910水温(℃)2022

25



30405063758596100

(1)上表中哪些量在发生变化?

(2)说一说水烧开之前水温是如何随着时间的变化而变化的?

(3)你还能举出我们生活中变化的量的例子吗?试着写出几个

测试结果分析:

(1)回答只有水温一个量变化的(2)不能描述水温随着时间变化而升高的(3)举例直说事物名称没有描述关系变化8人8人15人占全班22%占全班22%占全班41%

从分析数据可以看出,正如开始我们所说,我们生活在一个变化的世界里,学生能感受到周围的一切都在发生着变化,如温度的变化、速度的变化、物价的变化、季节的变化、身高体重的变化等。但是有接近一半的学生还不能从数学的角度探索现实世界中的变化及变化规律,不能感悟到很多变量和变量之间的相互依赖的关系。学生还没有从常量的世界进入奥妙无穷的变量的世界,开始接触一种新的思维方式。因此更加突出了本节课的教学目标。

3、 教学手段说明

分类思想是根据数学本质属性的相同点和不同点,将数学研究对象分为不同种类的一种数学思想。分类以比较为基础,比较是分类的前提,分类是比较的结果。数学中的分类思想,是根据数学对象本质属性的相同点与不同点,将其分成几个不同种类,进行研究从而解决问题的一种数学思想。它既是一种重要的数学思想,更是一种重要的数学逻辑方法。本节课将在分类辨析中比较,使学生对变量之间相互依赖关系的理解水到渠成。

教学目标:

1.知识与技能目标:体会生活中存在着大量互相依赖的变量,对这些变化的量有一个整体的结构化的认识,知道可以多种形式表示变量间的关系,并尝试用自己的语言描述它们之间的关系。

2.过程与方法目标:在具体情境中,借助数据和图像的深入分析,整体感知两种相关联的量的变化情况,初步探究它们的区别和联系。

3. 情感态度价值观目标:体验数学和生活的密切联系,主动尝试用数学的方法和语言进行交流和分析,体会函数思想。

教学过程:

1、导语:儿子过7岁生日时,我们为他点上了生日蜡烛,过了一会儿,我儿子突然喊起来:妈妈,我发现蜡烛越来越短了!我随口说道:当然了,蜡烛燃烧的越多,剩余的自然就越短。

这个情境中有没有哪两个量变化关系特别密切呢?

2、你能举出一个像这样一种量变化,另一种量也跟着变化的例子吗?(让学生说说生活中变化的量)

同学们都很善于观察,发现在生活中有很多变化的量,今天这节课我们就来研究这些变化的量。(板书:变化的量)

(一)初步感知,用不同的形式表示的变化的量

老师也收集了一些我们身边变化的量的例子,请你看一看每一个情境中有哪两种变化的量?它们又是如何变化的呢?先独立观察、思考,再小组内交流。

学生小组内讨论,教师巡视。

全班交流:请针对你感兴趣的一个情景说一说。

  (二)整体感知,根据变化的趋势分类

我们发现刚才的每个情境中都存在两种量,一种量变化,另一种量会随着发生变化。这些情境中有的量的变化关系具有共同的特点,请你尝试按照这样的标准进行分类。先思考,再小组交流。将同类的序号填在表格内,并简单写写每一类的特征。

小组汇报,[板书分类序号、特点]

小结:小明的体重和年龄的变化实际是有规律的,只不过规律不明显,受是知识和方法的限制,我们现在还研究不了,将来到了高中,我们可以继续研究。骆驼的变化呈现周期性规律,1个周期就是24小时。

(三)深入研究递减的变量间的联系和区别。

今天我们就按照这种分类方法继续深入研究变化的量,你们一定会有更多的发现。

刚才,我们将1和2分成了同一类,虽然都是一个量增加,另一个量就减少,但它们还是有区别的。

让我们来一起深入研究一下这两组(一增一减)变化的量,老师给大家提供了一些学习材料(作业纸)小组合作,用你们喜欢的方法进行研究。再整体观察分析,看看有什么新的发现。

1.汇报交流。

学生预设:从表格和图象两方面阐述,

小结:从表格中的数据能看出,同样是一增一减,燃烧长度和剩余长度是和不变(课件)。分的杯数和每杯的量是乘积不变(课件)。

从图象中也能看出这两种关系(课件)。并且同学们还发现蜡烛燃烧是有尽头的,图象是一条线段。而水是分不完的,图象无限趋近横轴,但不与横轴相交。

看来在变化的量中,还有不变的量,这个不变的量,决定了两个变化的量的关系,决定了他们的变化趋势。

2.总结方法

我们刚才观察两种变化的量时,你们都采用了什么方式进行的研究呢?他们有什么优势呢?(图象直观,便于观察整体的变化趋势,表格准确,可以借助数据进一步计算深入分析)

三、机动:对同增类的分析

刚才在分类时候,大家都同意将34分成一类,认为两个量的变化是同时增加的,你打算采用哪种方法进行研究呢?老师也给大家准备了研究材料,小组合作,你们有什么发现吗?

四、小结全课

1、这节课就要结束了,能谈谈这节课你的感受或问题吗?

2、其实我们今天研究的这些变化的量,都是我们以前已经知道并应用过的,例如正方形的周长和长方形的面积都是是我们三年级学过的内容,包括其他的情境中的变量都是我们非常熟悉的,今天我们从量的变化的角度出发,将数据和图形结合在一起观察分析,通过一次次的分类,发现在我们熟悉的这些规律中蕴含着更多的奥秘。同学们,其实变化的量中还有更多规律等着你们去发现,去探索。

五、学习效果评价分析

课后学生是否能从具体情境中发现相互依存的两个变量,并能用不同方式(语言、表格、图像或关系式)来描述两个变量之间的关系。

《小学六年级数学《变化的量》教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式